GTD – Generation, Transmission and Distribution of Electric Energy

  • -

GTD – Generation, Transmission and Distribution of Electric Energy

When we are dealing with GTD – Generation, Transmission and Distribution of Electric Energy, we refer to the SEP – Electrical Power System, which is defined by “all the materials and equipment necessary for the Generation, Transmission and Distribution of Electric Energy to the final consumer, including”.

The electric power is generated in the Power Plants, which can be: Hydroelectric, Thermoelectric, Nuclear, Solar, Wind, Geothermal and Tidal Power.

Hydroelectric plant

After generation, the voltage must be raised to transmission voltage levels, which is done in an Transformer Transmission Station, located next to the Generating Plant. It is a Voltage Lifting Substation.
The voltage is raised to 138 kV, 235 kV, 440 kV, 750 kV at the 60 hertz (AC) frequency, and there are some transmission networks operating at 1 MV on an experimental basis.
Some transmission networks work in DC until certain point of the circuit, being converted back to AC.

Tidal power plant

HVDC systems are an alternative for the transmission of large blocks of energy (over 1500 MW) over long distances (over 1000 km).

In the 1950s, the transmission voltage was 50 kV, then it was changed to 69 kV and some years later to 88 kV. Today these voltage values ​​are considered subtransmission voltage.

After the Transmission, there is a Transformer Transformer Station, where the voltage is transformed into subtransmission values ​​to feed the Transformer Distribution Stations and Substations of large industries.


The reason for increasing the value of the transmission voltage over the years was the increase in the demand for electric power, caused by the population increase, industrial and business growth and the range of consumer electronics devices that appeared in the consumer market, with increasing powers high.

As an example we have the electric shower, which migrated from 3000 W to 4500 W, 5600 W, 6800 W and 7800 W. Aluminum Cable for Transmission When we talk about increased demand, we refer to an increase in electric current, which causes overload in the Electrical System of Power and Loss, requiring the increase of the working voltage to lower the current, as they are inversely proportional in the SEP.

Aluminum Cable for Transmission

Another determining factor for raising the transmission voltage is that it is possible to reduce the gauge of the electric conductors, as the current values ​​are lowered; we can not forget that the calculation of voltage drop is also a preponderant factor for the calculation of the gauge of the conductor to be used.

Upon reaching urban centers, electricity must be lowered to levels of distribution to be delivered to customers.

The whole process of distribution network operation is found in the articles Primary Distribution Network, Distribution Transformer Station, Underground Distribution Network among others in this site.

SHORT Adolpho Eletricista

Adolpho Eletricista – Your Electrician in São Paulo- SP!

Electrician residential, real estate, commercial and industrial.

I attend in São Paulo, Greater São Paulo and South Zone of São Paulo – BR.

About Author

Adolpho Eletricista

Proprietário da Empresa Adolpho Eletricista. Técnico Eletrotécnico e Eletrônico habilitado. Eletricista residencial, predial, comercial e industrial autônomo com 42 anos de experiência. Atuação na Grande São Paulo e Zona Sul de São Paulo. Instrutor de NR-10. Atendimento Personalizado. Garantia de bons serviços. Redator de artigos técnicos profissionalizantes. Business Owner Adolpho Electrician. Electrotechnical and Electronic Technician enabled. Self-employed residential, building, commercial and industrial electrician with 42 years of experience. Expertise in the Greater ABC and Greater São Paulo region. NR-10 Instructor. Personalized service. Guaranteed good services. Writer of professional technical articles.

Posts recentes

Desenvolvido por : TyttoSoft (11) 9466-02599