Category Archives: Eletricidade

  • 0

Localizando uma Fuga Corrente

Um parceiro de trabalho se deparou com uma fuga de corrente em um torno CNC.

Foi acionado por um cliente pois a máquina estava “dando choque” na carcaça.

A princípio a suspeita era de Eletricidade Estática. Depois de algumas medições descartou-se essa hipótese e verificou se o problema não estava com o motor – talvez uma bobina danificada.

Todos os testes possíveis e imagináveis foram feitos, sem sucesso.

Após isso, ao medir a corrente do condutor de aterramento, verificou-se que estava em 49.2 A.

Isso mesmo! 49,2 A de fuga de corrente ! Você não leu errado.

Conversando, chegamos à conclusão que uma corrente de fuga desse porte jamais poderia ser Eletricidade Estática. Isso é corrente de fase! Deve haver uma fase encostando na carcaça da máquina ou o eletricista anterior, quando fincou a haste no chão, acertou algum condutor subterrâneo, hipótese improvável pois 100% da rede elétrica do imóvel é aérea, em isolador roldana e eletrocalha.

Ponto de terra centelhando

Encontrou-se um ponto de aterramento que centelhava devido à alta corrente de fuga.

Decorrido algum tempo, encontramos um transformador 220/380V trifásico, onde alguém encontrou um ponto para derivar o neutro e o aterramento.

Aterramento Conectado ao Trafo

Achou! Quem mexeu anteriormente (a 2 ou 3 anos) na instalação, aterrou uma fase.

Haviam pelo menos cinco tornos CNC aterrados nesse circuito, construído com fio 2.5 mm². Ao ser percorrido pela corrente de 49.2 A começou a deteriorar, sendo que apenas o torno em evidência estava aterrado no circuito, os demais ficaram isolados. Devido a isso somente este torno dava choque na carcaça.

Após desenergizar o QDG, desligou-se a conexão de neutro e terra do terminal do transformador e a corrente de fuga sumiu.

Se considerarmos que a indústria trabalhe 8 horas por dia e 22 dias por mês, teremos uma economia estimada de 1905 kW/h por mês.

Fica o alerta de que nossa responsabilidade ao executar serviços em Eletricidade é muito grande. Um erro nosso em uma instalação elétrica pode custar a vida de uma pessoa.

Ação proposta ao cliente: refazer o circuito de aterramento com condutores elétricos apropriados bem como a malha de aterramento, fincando maior número de hastes e medição do valor ôhmico até chegar ao ideal.

Adolpho Eletricista


  • -

Conheça a Eletricidade Estática

A eletricidade estática é o fenômeno de acumulação de cargas elétricas que pode se manifestar em qualquer material.

Ela acontece, principalmente, com o processo de atrito entre materiais e se manifesta em vários fenômenos que ocorrem no cotidiano, às vezes ocorre de forma inofensiva, mas em outros casos sua manifestação pode ser muito perigosa.

Eletricidade Estática


As manifestações da eletricidade estática são observadas, principalmente, em locais onde a umidade do ar é muito baixa, ou seja, locais secos.

Ao manusear um agasalho de lã sintética, por exemplo, é possível ouvir pequenos estalos que ocorrem em razão das descargas elétricas que acontecem entre seus fios.

Se estiver no escuro é possível visualizar pequenas faíscas entre os fios que foram eletrizados.

Nas fábricas de papel e nas tecelagens a eletricidade estática também se manifesta.

Nos enrolamentos de papel e de tecido ocorre atritamento desses materiais com as partes metálicas das máquinas, fazendo com que surjam cargas elétricas que podem produzir faíscas quando um empregado manuseia um material metálico próximo a esses locais.

Rolos de papel e tecido

As faíscas que surgem podem provocar incêndios e para evitar que isso não ocorra, esses locais são mantidos fechados e a umidade do ar é controlada, fazendo com que as máquinas sejam descarregadas na presença de gotículas de água e evitando dessa maneira os possíveis riscos de incêndios.

Nos aviões, caminhões de combustível e carros de fórmula 1 a eletricidade estática também se manifesta, podendo acontecer grandes explosões em virtude do material altamente inflável que esses veículos utilizam.

Ocorre também em veículos automotores.

Choque por Eletricidade Estática

Nos caminhões que fazem o transporte de combustíveis inflamáveis é comum existir uma corrente de metal que se arrasta pelo chão, fazendo com que as cargas elétricas que aparecem do atrito do caminhão com o ar sejam descarregadas no solo, evitando riscos de explosões.

O mesmo acontece com os aviões e os carros de fórmula 1 . Quando em movimento se atritam com o ar produzindo cargas elétricas e que são perigosíssimas no momento do abastecimento deles.

Para não correr risco de explosão durante o abastecimento, eles são aterrados como medida preventiva para descarregar as cargas elétricas existentes sobre suas superfícies.

Choque por energia estática

A eletricidade estática é muito perigosa na maioria dos casos, no entanto em outros ela é muito útil como, por exemplo, nas máquinas copiadoras.

Profissionais que trabalham em bancada com componentes e placas eletrônicas sensíveis a eletricidade estática, devem utilizar pulseira anti-estática para descarregar a eletricidade do corpo humano a fim de preservar tais componentes.

Pulseira anti-estática

Bancadas de laboratórios de eletrônica e assistências técnicas de eletrônica devem ser dotadas de pulseiras anti-estática.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Linhas de Transmissão

No Brasil, 80% da geração de energia elétrica provém de Usinas Hidrelétricas, 10% de Usinas Termoelétricas e o restante por Usinas Eólicas, Fotovoltaicas (Solar) e outras Fontes alternativas. Essa energia é conduzida até os centros consumidores através das Linhas de Transmissão.

Linhas de Transmissão

Na Usina, a energia é gerada na Classe de 5 kV e transformada para níveis de tensão de transmissão nas subestações elevadoras existentes nas Geradoras (138/225/440/750 kV) e transmitidas em Tensão Alternada (AC) pelas Linhas de Transmissão até as subestações rebaixadoras, onde serão rebaixadas a níveis de Tensão de Subtransmissão (69/88 kV) a fim de alimentar as Subestações de Distribuição e aos clientes atendidos em Alta Tensão.

Está em teste em alguns países a Transmissão em 1MV AC.

Subestação Rebaixadora

Na Usina de Itaipu, a tensão é gerada em 60 Hz no lado brasileiro e no lado paraguaio em 50 Hz. Porém, como o Paraguai não consome toda a energia gerada, parte dela é vendida para o Brasil em 50 Hz, porém a frequência de trabalho no Brasil é 60 Hz. A solução encontrada foi converter essa tensão para Tensão Contínua (DC) e transmiti-la em DC, devido ao custo operacional e fatores técnicos. Ao chegar aos Grandes Centros de Distribuição essa Tensão Contínua é convertida em Tensão Alternada através de uma Subestação Retificadora de Tensão em 60 Hz, adequada ao consumo no Brasil.

Usina de Itaipu

Todo o Sistema Elétrico Nacional de Transmissão e Geração de Energia Elétrica são interligados em anel a fim de que se uma Linha de Transmissão precisar ser desenergizada para manutenção ou cair por falha no Sistema Elétrico de Potência, possa ser alimentada por outra para suprir a falta de energia através de manobras de equipamentos.

Interligação do Sistema Elétrico Nacional

Geração, Transmissão e Distribuição de Energia (GTD) compõe o Sistema Elétrico de Potência (SEP), que é o conjunto de todas as instalações e equipamentos destinadas à geração, transmissão e distribuição de energia elétrica até a medição, inclusive.

De acordo com a ABNT:NBR 5410/2004 (Associação Brasileira de Normas Técnicas – Norma Brasileira Regulamentadora 5410/2004), considera-se BAIXA TENSÃO, a tensão superior a 50 V em AC ou 120 V em DC e igual ou inferior a 1000 V em AC ou 1500 V em DC, tensão entre fases ou entre fase e terra, e ALTA TENSÃO a tensão superior a 1000 V em AC ou 1500 V em DC, entre fase ou entre fase e terra. Tensões abaixo de 50 V em AC e 120 V em DC são chamadas de EXTRA BAIXA TENSÃO.

NBR 5410

Manutenções executadas em de Linhas de Transmissão:


1 – Substituição e manutenção de isoladores (dispositivo constituído de uma série de “discos”, cujo objetivo é isolar a energia elétrica da estrutura);
2 – Limpeza de isoladores;
3 – Substituição de elementos para-raios;
4 – Substituição e manutenção de elementos das torres e estruturas;
5 – Manutenção dos elementos sinalizadores dos cabos;
6 – Roçada e limpeza de faixa de servidão.

Roçada sob Linha de Transmissão

Serviços executados para construção de Linhas de Transmissão:

1 – Construção de Linhas de Transmissão;
2 – Desenvolvimento em campo de estudos de viabilidade técnica, relatórios de impacto do meio ambiente e projetos;
3 – Desmatamentos e desflorestamentos;
4 – Escavações e fundações civis;
5 – Montagens das estruturas metálicas;
6 – Distribuição e posicionamento de bobinas em campo;
7 – Lançamento de cabos (condutores elétricos);
8 – Instalação de acessórios (isoladores, para-raios);
9 – Ensaios e testes elétricos.

Construção de Linhas de Transmissão na China

Fontes:

1 – Curso de SEP – NR10 Módulo II.

2 – Arquivo pessoal.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • 2

Abertura e Fechamento de Chaves de Proteção e Manobra

A abertura e fechamento de chaves de proteção e manobra deve seguir alguns procedimentos constantes no MPT – Manual de Procedimentos de Trabalho que serão abordados a seguir.

Chaves faca

Todas as atividades devem ser precedidas de APR – Análise Preliminar de Riscos, utilização de EPI’s EPC’s pertinentes à tarefa.

Note que existe plaquetas identificadoras onde consta o número da Chave e Circuíto Primário a que pertence. Deve-se conferir os dados e repassar para o setor competente para conferencia e aprovação da abertura ou fechamento do dispositivo.

Para abrir uma chave do conjunto, deveremos utilizar vara de manobra para abertura a distância e observar que NUNCA se abre a chave central primeiro, pois se ocorrer algum problema com a chave na sua abertura ou se abrir arco voltaico estaremos em situação de iminente acidente de trabalho de proporções incalculáveis, pois estaremos trabalhando entre duas fases energizadas.

Toda operação de abertura de chaves deve ser executada com o dispositivo para abertura de chaves sob carga LB – LOAD BUSTER.

Vara de manobra com Load Buster acoplado

A primeira chave a ser aberta é uma das laterais, dependendo da direção do vento e da posição do operador em relação ao conjunto de chaves.

A segunda chave a ser aberta será a do meio devido à direção do vento anteriormente verificada; após, abre-se a última chave.

Seguir os procedimentos de trabalho para sinalização e aterramento temporário para o trabalho.

Para o fechamento das chaves devemos retirar os aterramentos temporários, sinalizações e certificar-se de que todos os trabalhadores estão distantes da rede elétrica, bem como solicitar ao setor responsável a autorização para reenergização do circuíto, pois poderá haver outras equipes trabalhando em outros pontos do circuíto que não sabemos.

Após autorizados, iremos proceder ao fechamento das chaves.

Novamente deve-se observar a direção do vento e executar o fechamento das chaves.

A primeira chave a ser fechada deverá ser a lateral mais difícil, levando-se em conta a direção do vento e a posição do sol em relação aos olhos do operador, devido ao ofuscamento das vistas.

A chave central NUNCA deverá ser a última a ser fechada pelos mesmos motivos da abertura.

As chaves deverão ser fechadas com firmeza e precisão, pois se ela bater e não fechar o operador deverá ficar segurando a chave em posição fechada até que o circuíto seja desenergizado em um ponto anterior, e isso pode levar horas.

Caso bater a chave e ela vier a abrir por falha na operação de fechamento, abrirá arco voltaico de grande proporção, podendo gerar graves danos ao patrimônio da empresa e acidente de trabalho envolvendo o operador.

Volte para casa da mesma forma que saiu. Ninguém está lhe esperando amputado ou num caixão.

Trabalhe com segurança!

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.

11 96898.4344

  • 6

Potências Ativa, Reativa, Aparente, Capacitiva e Indutiva.

Uma breve comparação entre potências ativa, reativa, aparente, capacitiva e indutiva, a fim de defini-las.

Triângulo das Potências

Potência Aparente: é a potência adquirida pelas concessionárias das geradoras.

Potência Ativa: é a potência fornecida aos clientes e que geram trabalho.

Potência Reativa: é a potência gerada quando do funcionamento de determinados equipamentos e que geram fator de potência alto e, quando retornam ao Sistema Elétrico de Potência – SEP, prejudicam as redes de distribuição e de transmissão de energia elétrica, por ter a corrente elétrica atrasada em relação à tensão.

Corrente atrasada em relação à tensão

Potência Capacitiva: É a potência que, por ter a corrente adiantada em relação à tensão, compensa a Potência Reativa, que tem a corrente atrasada.

Corrente adiantada em relação à tensão

Potência Indutiva: É gerada por equipamentos puramente resistivos.

Caneca de Chopp das Potências

Podemos fazer uma analogia das potências com uma caneca de chopp, onde:

  • kVA é a potência aparente que as concessionárias compram das geradoras, que equivale à caneca de chopp cheia que compramos em uma choperia;
  • kW é a potência ativa fornecida aos clientes e que efetivamente geram trabalho, ou seja, a parte líquida da caneca de chopp que realmente consumimos;
  • kVAr é a potência reativa que é desperdiçada, ou seja, a espuma que não é consumida.

A fim de diminuir a quantidade de espuma da caneca (perdas), o atendente passa a régua na borda da caneca (controle do fator de potência), o que equivale a instalar um Banco de Capacitores na instalação elétrica do cliente.

A potência fornecida para os clientes pelas Concessionárias é a ativa.

Equipamentos resistivos geram potência indutiva.

Equipamentos como motores, transformadores e reatores geram Potência Reativa e, consequentemente, influenciam no fator de potência, que é a relação entre Potência Aparente e Potência Ativa.

O fator de potência ideal é 1, mas devido à potência reativa, nunca teremos esse valor em uma rede de energia elétrica.

Para minimizar e controlar os danos ao SEP, a ANEEL – Agência Nacional de Energia Elétrica, estabeleceu que o fator de potência não pode ultrapassar 0,92.

Caso o cliente ultrapasse esse valor, mensurado pelo medidor de watt hora das concessionárias, será aplicada multa definida em contrato com a concessionaria quando da solicitação de ligação de energia elétrica.

Essa multa é cobrada na fatura de energia elétrica e repassada para a ANEEL.

Caso o cliente desative máquinas, suspenda as atividades ou entre em férias coletivas, o banco de capacitores deverá ser redimensionado ou desativado, pois o excesso de Potência Capacitiva também prejudica o SEP e eleva o valor do Fator e Potência.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.

11 96898.4344

  • 3

Dúvidas sobre o Sistema Delta de Distribuição

Algumas dúvidas frequentes de leitores do site e profissionais da área sobre Sistema Delta.


Equipamentos trifásicos fabricados para o Sistema Estrela funcionam no Sistema Delta?

Tanto os motores quanto as resistências funcionam normalmente no Sistema Delta.
Apenas as ligações do motor devem ser executadas por um profissional capacitado para não danificá-lo.


O Sistema Delta na prática é igual ao Triângulo?
Sistema Delta e triângulo é a mesma coisa. Chama-se de triângulo pois a representação da letra grega delta é um triângulo.


Uma das diferenças entre o Sistema Trifásico Delta é que a quarta fase (fase S) tem tensão maior em relação ao neutro?

Sim. A tensão nominal de quarta fase (fase S) em relação ao neutro é 200V, enquanto que no Sistema Estrela as tensões de fase são equilibradas (127V entre fase e neutro).


Adquiri uma máquina para Sistema Estrela 220V trifásico. Quando expliquei que aqui o trifásico é Sistema Delta, o fornecedor não soube informar, pois desconhece o Sistema.

Diversas máquinas fabricadas para o Sistema Estrela estão instaladas no Sistema Delta, porém é necessário fazer as devidas conversões de ligações por um profissional capacitado.
Existem algumas ligações que diferenciam o Sistema Delta do Sistema Estrela.
É preciso verificar o tipo de ligação do motor, que podem ser ligados de várias formas, conforme esquemas de ligação estampado na placa de identificação.

A mesma máquina trifásica que se liga no Sistema Estrela pode ser ligado no Sistema Delta?
Se a máquina veio de fábrica para trabalhar em estrela é necessário adequar as ligações para sistema delta.
O sistema operacional da máquina é alimentado em 127 ou 220 V, logo é indiferente ser delta ou estrela para o IHM e CLP.
Quem trabalha no trifásico é somente o motor e alguns tipos de resistências que podem ser ligados em delta.

Equipamentos importados da Europa, principalmente, trabalham apenas em Sistema Estrela. Não admite ligação no Sistema Delta. Se a instalação do cliente for Delta, deverá ser solicitado à concessionária a conversão para Sistema Estrela e, por ser Conveniência Técnica do Cliente, o custo total da obra para conversão correrá por conta do Cliente.

O neutro do Sistema Delta e Estrela é o mesmo, bem como da rede secundária e primária de distribuição. Toda malha de neutro é interligada e aterrada em pontos específicos.

Conforme forem surgindo maiores dúvidas de leitores, profissionais e clientes, serão acrescentadas neste artigo em forma de revisão.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista 24 horas em Santo André!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul do Estado de São Paulo.

11 96898.4344

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO


  • -

  • -

GTD – Geração, Transmissão e Distribuição de Energia Elétrica

Quando tratamos de GTD – Geração, Transmissão e Distribuição de Energia Elétrica, nos referimos ao SEP- Sistema Elétrico de Potência, que é definido por “todos os materiais e equipamentos necessários para a Geração, Transmissão e Distribuição de Energia Elétrica até o consumidor final, inclusive”.

Read More


  • 2

Estação Transformadora de Distribuição – Subestação

Estação Transformadora de Distribuição (ETD) ou Subestação de Energia (SE) são conjuntos de equipamentos de proteção e manobra e transformadores utilizados para elevar ou rebaixar a tensão de geração ou transmissão de energia elétrica.

Read More


  • -

Perdas no Sistema Elétrico de Potência

O SEP – Sistema Elétrico de Potência é composto por geração, transmissão e distribuição. As Perdas no Sistema Elétrico de Potência referem-se à energia elétrica gerada que passa pelas linhas de transmissão e redes de distribuição, mas que não chega a ser comercializada, seja por motivos técnicos ou comerciais.

Read More


  • -

Estruturas Primárias Básicas – RDA

Irei tratar neste artigo de Estruturas Primárias Básicas utilizadas na Rede de Distribuição Aérea.

Em cada simbologia, a letra “X” representa o número de fases (1, 2 ou 3) existentes no circuíto primário em questão.

ESTRUTURA BECO

B4(3) – Ponto Mecânico

B1(X) – Estrutura Beco (0x3) construção em cruzeta para ângulos até 15º em cabo 50 mm² e 10º em cabo 120 mm².

B2(X) –  Estrutura Beco (0x3) construção em cruzetas para ângulos de 15º a 30º em cabo 50 mm² e 10º a 20º em cabo 120 mm².

B3(X) – Estrutura Beco (0x3) construção em cruzetas para Final de Linha.

B4(X) – Estrutura Beco (0x3) construção em cruzetas para ponto mecânico – redução de tensão mecânica dos cabos.

Notas: 1. As demais estruturas serão obtidas por composição das estruturas apresentadas.

2. 0x3 significa que as 3 fases estão para o lado da via.

ESTRUTURA MEIO BECO

M4(3) – Ponto Mecânico

M1(X) – Estrutura Meio Beco (1×2) construção em cruzeta para ângulos até 15º em cabo 50 mm² e 10º em cabo 120 mm².

M2(X) – Estrutura Meio Beco (1×2) construção em cruzetas para ângulos de 15º a 30º em cabo 50 mm² e 10º a 20º em cabo 120 mm².

M3(X) – Estrutura Meio Beco (1×2) construção em cruzetas para Final de Linha.

M4(X) – Estrutura Meio Beco (1×2) construção em cruzetas para ponto mecânico – redução de tensão mecânica dos cabos.

Notas: 1. As demais estruturas serão obtidas por composição das estruturas apresentadas.

2. 1×2 significa que 2 fases estão para o lado da via e uma para o lado da calçada.

TRAVAMENTO DE CENTRO

Travamento de Centro

N3 – Estrutura com travamento de centro – construção em cruzetas para 3 fases, para que não gire quando aplicada tensão mecânica. Utilizada somente em locais onde não houver condições para estaiamento do conjunto de cruzetas.

PINO DE TOPO

PINO DE TOPO

PINO DE TOPO

U1 – Construção para apenas uma fase em RETA.

U2 – Construção para apenas uma fase em ÂNGULO.

U3 – Construção para apenas uma fase em FINAL DE LINHA.

U4 – Construção para apenas uma fase em PONTO MECÂNICO.

REDE COMPACTA

RC1 – RETA

RC1 – Construção em rede compacta – spacer cable – RETA.

RC2 – Construção em rede compacta – spacer cable –  ÂNGULO.

RC3 –  Construção em rede compacta – spacer cable – FINAL DE LINHA.

RC4 – Construção em rede compacta – spacer cable – PONTO MECÂNICO.

RC5 – Construção em rede compacta – spacer cable – RETA com DERIVAÇÃO em 90º.

RC6 – Construção em rede compacta – spacer cable – RETA com DERIVAÇÃO em ÂNGULO.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Rede de Distribuição Subterrânea – RDS

Tomarei nesta série de artigos um estudo sobre Rede de Distribuição Subterrânea – RDS no que concerne a distribuição de energia elétrica, uma vez que temos RDS para telecomunicação, sistema de TV a cabo, entre outros.

Sempre deveremos nos lembrar que circunvizinhos à RDS encontraremos redes de água, esgoto, tubulações de gás e precisaremos ficar atentos para não provocar acidentes.

Na RDS encontramos rede de transmissão de energia elétrica, ETD Subterrânea, distribuição primária de energia elétrica, equipamentos de proteção e manobra, câmaras transformadoras, distribuição secundária de energia elétrica, derivações no circuíto secundário para ligação dos padrões instalados pelos clientes.

Um dos primeiros passos para trabalhar com RDS é cursar CMRDS – Curso de Manutenção de Rede de Distribuição Subterrânea e CMRTS – Curso de Manutenção de Rede de Transmissão Subterrânea.

Feito isso, cursar NR-10 – módulo I e SEP – Sistema Elétrico de Potência – que é o módulo II de NR-10.

RDS trata-se de ambiente confinado, logo torna-se obrigatório a certificação em NR-33.

Por ser um assunto vasto, tratarei deste assunto em módulos, na seguinte ordem:

1 – Transmissão e ETD subterrânea.

2 – Distribuição primária, proteção e manobra e câmaras transformadoras.

3 – Distribuição secundária.

Introdução

TERMINOLOGIA DE REDE SUBTERRÂNEA

• Rede de distribuição subterrânea: rede elétrica constituída de cabos e acessórios isolados instalados sob a superfície do solo, diretamente enterrados ou em dutos.

• Circuito primário subterrâneo: parte da rede subterrânea, constituído de cabos isolados, que alimentam os transformadores de distribuição da Concessionária e/ou de consumidores.

• Circuito secundário subterrâneo: parte da rede subterrânea, constituído de cabos isolados, que a partir dos transformadores de distribuição aérea ou em pedestal conduz energia aos pontos de consumo.

• Ramal de entrada primário subterrâneo: conjunto de condutores e seus acessórios compreendidos entre o ponto de derivação da rede primária aérea / subterrânea e um ou mais pontos de entrega.

• Ramal de entrada secundário subterrâneo: conjunto de condutores e seus acessórios compreendidos entre o ponto de derivação da rede secundária e o ponto de entrega.

• Limite de propriedade: demarcações que separam a propriedade do consumidor da via pública e dos terrenos adjacentes de propriedades de terceiros no alinhamento designado pelos poderes públicos.

• Ponto de entrega: é o ponto até o qual a Concessionária se responsabiliza pelo fornecimento de energia elétrica e pela execução dos serviços de operação e manutenção. O ponto de entrega deverá situar-se no limite da via interna com o limite da propriedade (lote).

• Transformador em pedestal: transformador selado, para utilização ao tempo, fixado sobre uma base de concreto, com compartimentos blindados para conexão de cabos de média tensão e de baixa tensão.

• Poço de inspeção/ mini poço de inspeção: construção subterrânea em alvenaria, designada para instalação de cabos de média tensão, cabos de baixa tensão, emendas em geral e acessórios para rede subterrânea;

Poço de inspeção.

• Caixa de Distribuição Primária (CDP): construção em alvenaria, designada para passagem de cabos primários;

• Base em Pedestal: base em concreto para fixação do transformador do tipo em Pedestal e Quadros em Pedestal (QDP);

• Quadro de Distribuição Pedestal (Q.D.P.): conjunto de dispositivos elétricos (chaves, barramentos, isoladores e outros), montados em caixa metálica ou fibra de vidro com poliuretano injetado, destinados a operação (manobra e proteção) de circuitos secundários (entradas de serviço).

• RA (Disjuntor): equipamento de proteção com controle integrado de circuitos trifásicos, de tensões nominais acima de 1 kV e até 36,2 kV em corrente alternada, aplicados como dispositivos de manobra e proteção dos alimentadores de circuitos de distribuição. Cada proteção de alimentador de circuito de distribuição deve ser constituída de proteção de sobrecorrente nas três fases e neutro, falha de disjuntor, religamento automático (esta função será Bloqueada para esta aplicação), seqüência negativa, subfreqüência e “cold load pick-up”.

Fonte: ENEL

 

Agradeço a todos pela confiabilidade.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • 5

  • 8

Sistema Elétrico de Potência – SEP

SEP – Sistema Elétrico de Potência é o conjunto de todas as instalações e equipamentos destinados à geração, transmissão e distribuição de energia elétrica até a medição, inclusive.

Sistema Elétrico de Potência

A Geração é responsável por produzir a tensão elétrica.

As Usinas Geradoras de Energia Elétrica podem ser:

  • Hidroelétrica
  • Termoelétrica
  • Nuclear
  • Solar
  • Geotérmica
  • Maremotriz
  • Eólica
  • Biomassa

Após a geração, em CA, a tensão passa por um processo de elevação para poder ser transmitida em níveis de alta tensão, devido apresentar menores perdas e menor custo de implantação do sistema de transmissão, pois quanto maior a tensão, menor a corrente elétrica.

Como quem determina a bitola dos cabos são a corrente elétrica e a queda de tensão, quanto maior for a tensão de transmissão menor será a bitola dos cabos.

Linhas de Transmissão de Energia Elétrica

Valores de tensão de transmissão e subtransmissão: 750; 500; 230; 138; 88; 69 kV.

As tensões de 69 e 88 kV são consideradas subtransmissão, ou seja, são rebaixados os valores de tensão em uma
ETT – Estação Transformadora de Transmissão, para alimentar clientes em tensão de subtransmissão.

Ao chegar nas ETD’s – Estações Transformadoras de Distribuição, também conhecidas como subestações, a tensão de transmissão ou subtransmissão, dependendo da tensão de alimentação da ETD, é rebaixada a valores de tensão de distribuição primária ( 34,5, 24,5  e 13,8 kV). Em algumas regiões ainda existe a tensão de distribuição primária no valor de 3,8 kV, porém encontra-se em fase de extinção.

Estação Transformadora de Distribuição – ETD

Os circuítos de distribuição primários no Sistema Elétrico de Potência são identificados de acordo com a classe de tensão e tensão de trabalho, sendo:

Classe  5 kV – Tensão de Trabalho – 3.8 kV – Identificação do circuíto começa por “0”

Exemplo: Circuito 03, 04, 05.

Classe 15 kV – Tensão de Trabalho – 13.8 kV – Identificação do circuíto começa por “1”

Exemplo: Circuito 103, 104, 105.

Classe 25 kV – Tensão de Trabalho – 24.5 kV – Identificação do circuíto começa por “2”

Exemplo: Circuito 203, 204, 205.

Classe 35 kV – Tensão de Trabalho – 34.5 kV – Identificação do circuíto começa por “3”

Exemplo: Circuito: 303, 304, 305.

Todas as ETD’s possuem um nome e uma sigla. No caso da ETD Capuava, sigla CAP. ETD Santo André, sigla SND, e a nomenclatura dos circuítos primários ficarão:

  • SND – 03 – SND – 04 – SND – 05, pois a tensão de distribuição primária dessa ETD é 3,8 kV.
  • CAP – 103 – CAP – 104 – CAP – 105, pois a tensão de distribuição primária dessa ETD é 13,8 kV, e assim por diante.

Os circuitos de distribuição primários com final ’00’ e ’01’ são circuítos socorro e não são utilizados para distribuir tensão aos centros urbanos, como os demais. Eles ficam apenas em ‘tensão’, sem carga. Caso ocorra algum problema em algum outro circuíto, como falha em transformador, por exemplo, o circuíto socorro assumirá, através de manobras de chaves de faca, a carga do circuíto com falha.

Circuíto Primário de Distribuição

Ao chegar aos centros consumidores de energia elétrica, a tensão de distribuição primária poderá atender a clientes industriais e grandes clientes em Média Tensão através de cabine primária, contrato que deverá ser celebrado junto à concessionária de energia elétrica através de projetos elétricos e demais documentações.

Cabine Primária

Para atender os clientes em baixa tensão – BT, os valores de tensão de distribuição primária deverão ser rebaixados para valores de tensão de distribuição secundária, e entregues no padrão de entrada do cliente.

Padrão de entrada

A concessionária é responsável em fornecer o valor de tensão de acordo com as Normas e Padrões da ANEEL até o disjuntor do padrão de entrada do cliente.

A responsabilidade pela construção e manutenção do padrão de entrada é do cliente, bem como a conservação do medidor de watt hora que ficará sob sua responsabilidade. Em caso de mau uso ou vandalismo, o cliente responderá pelas consequências.

A responsabilidade pela manutenção periódica do medidor de watt hora e reparo em caso de avaria causada pelo desgaste do equipamento é da concessionária.

Os valores de tensão de fornecimento no sistema delta e estrela poderão ser verificados nos artigos Sistema Delta e Sistema Estrela.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Conheça o Sistema Estrela de Distribuição de Energia Elétrica


O Sistema Estrela é composto por
 um transformador (trafo) trifásico alimentado pelas 3 fases do circuíto primário de distribuição de energia elétrica.

As buchas primárias H1, H2 e H3 são alimentadas pelas 3 fases primárias, protegidas por chaves fusíveis (Matheus) e elos especificados de acordo com a potência do trafo.

Nas buchas de saída secundária X0, X1, X2 e X3 obteremos as tensões de saída, conforme esquema abaixo:

Esquema de Ligação Sistema Estrela

O sistema está alimentado em 13.8 kV, pois as fases são D, E e F, assunto abordado no artigo sobre Sistema Delta.

A bucha X0 corresponde ao NEUTRO do sistema estrela, X1 à fase A, X2 fase B e X3 fase C.

As tensões nominais entre Neutro e Fase A, Neutro e Fase B, Neutro e Fase C são iguais a 127 V e as tensões nominais de linha iguais a 220 V (sistema 127/220 V).

As fases A, B e C são mais conhecidas na indústria por R, S e T.

Esquema de um Transformador Estrela

No sistema estrela 220/380 V a tensão nominal entre Neutro e Fase é de 220 V, e a tensão nominal de linha é 380 V.

A expressão utilizada para cálculo de tensão no sistema trifásico é a seguinte:

onde: VFN – tensão de fase neutro

VFF – tensão de fase fase ou tensão de linha

V3 = 1.73 (valor aproximado, pois trata-se de dízima periódica)

De acordo com a estrela formada pelas 3 bobinas secundárias (figura acima), notamos que o ângulo de defasagem entre as Fases A, B e C é de 120º, o que mantem as tensões defasadas conforme figura abaixo:

Gráfico de Defasagem de Tensão Trifásica

Nota do Autor: Tensão RMS, do inglês Root Mean Square (Raiz Média Quadrática) ou Valor Eficaz são as tensões de linha ou de fase.

Analogia entre Sistema Estrela e Sistema Delta

No Sistema Estrela, por apresentar tensões equilibradas, conseguimos fazer um balanceamento de cargas muito superior ao Sistema Delta, que apresenta tensões desequilibradas.

Devido ao desequilíbrio entre as tensões secundária, o Sistema Delta gera um desbalanceamento de cargas muito grande no SEP – Sistema Elétrico de Potência, prejudicando-o, enquanto que no Sistema Estrela, por apresentar tensões equilibradas, conseguimos balancear as cargas com maior facilidade, mantendo o SEP mais estável e gerando um número menor de manutenções nos circuítos de distribuição, transmissão e na geração de energia elétrica.

Conclusão

O Sistema Estrela é infinitamente melhor que o Sistema Delta em todos os aspectos.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • 10

Sistema Delta de Distribuição de Energia Elétrica

Os transformadores do Sistema Delta (Triângulo) são monofásicos – alimentados por apenas uma fase primária.

A tensão nominal entre fase/neutro é 115 V.

A tensão de linha – fase/fase – nominal é 230 V.

O cálculo para tensão de linha no Sistema Delta é:

VL = 2 . VFN

Onde: VL = tensão de linha

VFN = tensão de fase/neutro

Na figura abaixo, temos o exemplo de um transformador (trafo) do sistema delta, alimentado em 13.8 kV.

Como saber qual a tensão de alimentação? Simples: A fase primária de alimentação do trafo é a fase D.

Recordando

Classe  5 kV – Tensão de Trabalho – 3.8 kV – Fases A, B, C.

Classe 15 kV – Tensão de Trabalho – 13.8 kV – Fases D, E, F.

Classe 25 kV – Tensão de Trabalho – 24.5 kV – Fases G, H, I.

Classe 35 kV – Tensão de Trabalho – 34.5 kV – Fases J, K, L.

De acordo com a letra que define a fase em que o equipamento está ligado, sabemos a Classe de Tensão e a Tensão de Alimentação.

De acordo com o esquema abaixo, verificamos que a bucha primária H1 é ligada na fase D e o bucha H2 é aterrada para gerar diferença de potencial (ddp) entre as extremidades da bobina primária, a fim de gerar campo magnético e rebaixar a tensão através da bobina secundária.

Sempre deverá ser instalada chave fusível (Matheus) entre a fase e a bucha H1 do trafo.

A capacidade do elo fusível será determinada de acordo com a potência do trafo.

Sistema Delta LUZ

DELTA LUZ

A bobina secundária tem três pontos de derivação, x1, x2 e x3, sendo x1 e x3 as extremidades da bobina e x2 o ‘center tap’, de onde é gerado o neutro – potencial zero em condições ideais.

É praticamente impossível manter o condutor neutro em potencial ‘zero’ devido ao enorme desbalanceamento de cargas existente no Sistema Elétrico de Potencia.

NOTAS: 

1 -Toda a malha de neutro das concessionárias de energia elétrica são interligadas e aterradas em pontos determinados, inclusive nas ETD’s (Estações Transformadoras de Distribuição), também conhecidas por Subestações, independentemente se o Sistema é Delta ou Estrela.

2 – O Neutro do circuíto primário de distribuição é o mesmo do circuíto secundário. Não existem dois condutores Neutro (primário e secundário), somente um, chamado de Neutro Geral.

Veja mais sobre balanceamento de cargas , artigo redigido por mim, Adolpho Eletricista, para o blog Saber Elétrica.

Toda a malha de neutro é aterrada, a fim de manter o neutro o mais próximo possível do potencial zero.

O Sistema Delta Luz é eficiente apenas para residências, comércios e pequenas empresas que não necessitam da quarta fase (quarta, pois o neutro é considerado como fase) para trabalhar. Quando o cliente necessita da quarta fase, com o maior motor até 5 CV, ‘abre-se’ o delta, conforme figura abaixo.

Sistema Delta Aberto

DELTA ABERTO

Para ‘abrir o Delta’, adiciona-se outro trafo monofásico – F1 – porém ligado em outra fase primária – fase E – com a diferença de que o x2 ficará em aberto, e deverá ser obedecido o esquema de ligação de x1 do LUZ com o x3 do FORÇA, ou x3 do LUZ com o x1 do FORÇA.

Caso haja inversão na ligação, x1 com x1 e x3 com x3, os motores irão girar ao contrário e sofrerão danos.

As tensões de fase neutro e tensão de linha permanecem as mesmas, 115/230 V, porém a tensão nominal da quarta fase com o neutro será 190 V, e tensões de fase com 4º fio será de 230 V nominal.

O 4⁰ fio SOMENTE deverá ser utilizado para alimentar motores e cargas trifásicas, NUNCA para alimentar cargas mono ou bifásicas, devido a diferença nos valores de tensão nominal e do ângulo de defasagem das tensões de fase e 4º fio.

Caso isso aconteça, haverá queima de equipamentos.

Esquema de Ligação Delta Aberto

A pergunta mais frequente é: “como se chega ao valor de 200 V entre neutro e 4º fio?”

Analisando o esquema acima, podemos verificar que temos 1/2 bobina do trafo de LUZ (de x2 até x1 ) mais 1 bobina inteira do FORÇA 1 (de x3 até x1), totalizando 1 bobina e 1/2, o que gera 200 V entre NEUTRO e 4º fio.

A tensão de 4º fio é calculada da seguinte forma:

V4⁰fio = 115 * raiz 3 = 115 * 1.73 = 198V

O trafo de FORÇA sempre deverá ser de potência inferior ao trafo de LUZ, ou no máximo de mesma potência.

Quando o cliente tem a necessidade de acionar motores acima de 5 CV, o Delta deverá ser ‘fechado”, obtendo-se maior potência do banco de transformadores.

Sistema Delta Fechado

DELTA FECHADO

Para ‘fechar’ o Delta, acrescenta-se mais um trafo monofásico – F2, alimentado por outra fase primária (F).

As tensões nominais de fase neutro, linha e 4º fio não se alteram.

Deve ser observado atentamente o esquema de ligações: caso o x1 do F1 esteja ligado no 4º fio, o x3 do F2 também deverá ser ligado à 4º fio, e o x1 do F2 ligado ao x3 do LUZ.

Se o x3 do F1 estiver ligado na 4º fio, o x1 do F2 deverá ser ligado ao 4º fio e o x3 do F2 ligado ao x1 do LUZ.

Caso houver erro nas ligações, x3  do F1 com x3 do F2 e x1 do F2 ligado com x1 do LUZ, provocará curto circuito entre fases, e quando for ligar o Delta Fechado irá estourar os elos fusíveis de proteção das três fases do banco de trafos e os três elos fusíveis da proteção do circuíto. Caso o circuíto seja protegido por Religadora Automática ou Seccionalizadora, elas irão operar e desligar o circuíto primário. Caso não haja proteção no circuíto antes do banco de trafos, irá desligar o circuíto primário na ETD – Estação Transformadora de Distribuição (subestação).

Os trafos de FORÇA deverão ser de potências iguais e inferiores ou no máximo iguais ao trafo de LUZ.

Quem determinará a potência dos trafos a serem instalados será o departamento técnico da concessionária após análise do projeto elétrico e relação de cargas apresentado pelo cliente quando do pedido de ligação, acréscimo de carga ou modificação.

Sistema Delta Fechado

São encontrados transformadores do Sistema Delta ligados na mesma fase primária. Nesses casos, são dois transformadores de LUZ ligados em paralelo e suas potências se somam. Esse procedimento é utilizado quando necessita-se de um banco de maior potência na LUZ e não existe trafos comercializados nessa potência.

Exemplo: Necessita-se de um banco de trafos de LUZ de 200 kVA. Instala- se dois trafos de 100 kVA em paralelo para obter-se 200 kVA.

Os trafos Delta existentes nas redes de distribuição são de 5, 10, 15, 25, 37.5, 50, 75 e 100 kVA, porém os comercializados atualmente são apenas os de 10, 25, 50 e 100 kVA.

De acordo com Portaria da ANEEL – Agência Nacional de Energia Elétrica, a partir da década de 90 ficou proibido o projeto de Estações Transformadoras de Distribuição do Sistema Delta, permitindo-se apenas manutenções nas existentes. As Estações Transformadoras de Distribuição projetadas a partir do vigor da Portaria deverão ser do Sistema Estrela, com o propósito de melhorar o balanceamento de carga dos circuítos primários de distribuição e dos circuítos de transmissão.

Vantagens do Sistema Delta

A única vantagem do Sistema Delta é o custo de implantação do sistema, pois com apenas uma fase primária obtém-se tensão secundária para atender aos clientes residenciais, comerciais e empresariais que não necessitam de rede trifásica. Com um custo muito menor que o Sistema Estrela atinge-se o objetivo.

Desvantagens do Sistema Delta

O Sistema Delta gera um desbalanceamento de cargas muito grande no Sistema Elétrico de Potência – SEP, exigindo medições constantes de corrente elétrica das fases primárias de distribuição e de transmissão, muitas vezes sendo necessário baldear transformadores de uma fase para outra a fim de balancear as cargas dos circuítos.

Leia também Sistema Estrela

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Saiba o Que é Religadora Automática e como Funciona

A Religadora Automática – RA,  é um equipamento automatizado de manobra instalado nas redes de distribuição de energia elétrica, normalmente em circuitos primários de 13.8, 27 e 36 kV.

Religadora Automática em Poste

Estão predominantemente localizadas na rede de distribuição primária, entretanto, para restabelecer as interrupções no fornecimento de tensão com maior eficácia e rapidez, elas também são encontrados em Estações Transformadoras de Distribuição – ETD, também conhecidas como subestações, operando em coordenação com uma seccionadora automática ou com um disjuntor.

Religadora Automática em ETD

A RA possui duas funções básicas no sistema de distribuição: confiabilidade e proteção de sobrecorrentes. Elas são frequentemente utilizadas para aumentar a confiabilidade do sistema elétrico de distribuição de energia.

É uma solução econômica para seccionamento das redes de energia elétrica de distribuição, e muitas vezes é utilizada em locais onde a coordenação com outros equipamentos de proteção e manobra é difícil. É adequada para utilização em redes de distribuição aérea de média tensão, em coordenação com a proteção automática do circuito religador.

Seu princípio de funcionamento se baseia na detecção automática de falha na rede elétrica, interrompendo o circuito elétrico temporariamente. Após um período pré-configurado, a RA restabelecerá automaticamente a energia na rede elétrica, verificando se a falha no circuíto ainda persiste. Caso persista, ela desligará e após determinado tempo religará novamente.

Pode ser programada para duas tentativas de religamento rápidas – de 10 a 15 segundos cada operação e duas tentativas retardadas – de 20 a 30 segundos, ou uma tentativa rápida e três retardadas, ou de acordo com a necessidade do circuíto elétrico onde será instalada.

Caso a falha tenha sido regularizada após a primeira operação, a RA se manterá ligada e o circuíto elétrico será restabelecido, sem a necessidade de intervenção de profissionais; caso contrário, ela desligará e após o tempo programado, tentará religar novamente. O número máximo de tentativas de religamento do circuíto é quatro operações. Caso o religamento não tenha sucesso, uma equipe de profissionais deverá comparecer ao local a fim de regularizar a falha e religar o equipamento.

São instaladas geralmente em zonas arborizadas,

Galhos de Árvores

onde a incidência de galhos na rede de distribuição é grande, o que provoca o desligamento do circuíto. Como o tempo que o galho fica sobre a rede geralmente é curto, provavelmente na primeira tentativa de religamento o galho já saiu da rede e o circuíto é restabelecido.

Trabalho em Linha Viva

Uma outra aplicação da Religadora Automática é bloquear o religamento do circuíto elétrico. Quando equipes de trabalho em linha viva (energizada) irão trabalhar além RA, utiliza-se a função de bloqueio, pois caso aconteça algum acidente durante o trabalho, ela irá desligar e não religará novamente. Após executados os serviços, retira-se a RA da condição de bloqueio.

Pode ser utilizada também para seccionar o circuíto elétrico para manutenções em linha morta (desenergizada).

Trabalho em Linha Morta

As operações de desligamento, religamento e bloqueio da RA podem ser executadas através de equipamentos específicos para manobra por profissionais capacitados, ou por automação (operação à distância).

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Regulador de Tensão Tipo Poste – Média Tensão

Reguladores de tensão tipo poste são equipamentos instalados em ramais longos de circuítos primários que alimentam regiões de baixa densidade de carga, principalmente em zonas suburbanas e rurais onde a regulação de tensão natural do circuíto é prejudicada.

Os reguladores são monofásicos ou trifásicos, o que permite a sua utilização em ramais de circuítos primários mono, bi ou trifásicos.

Regulador de Tensão Monofásico

É programado para entrar em funcionamento quando a tensão primária estiver abaixo ou acima dos limites de tensão primária preestabelecidos (+10% ou -10%).

Os reguladores de tensão monofásicos podem ser instalados em linhas monofásicas ou formando bancos em montagem bi ou trifásicas nas redes primárias. Sua montagem requer em sua ligação a identificação dos lados fonte/carga (source/load).

O comando do regulador de tensão é feito por um sensor de nível de tensão e de compensação de queda de tensão do trecho do circuíto considerado que possibilita o ajuste automático da posição do regulador, elevando ou abaixando, na saída do

Banco de Religadores Monofásicos

regulador de tensão, a tensão que recebe na entrada, de tal forma que, teoricamente, em um determinado ponto do circuíto primário a tensão é constante.

Calcula-se a compensação do regulador de tensão de forma que a tensão máxima de saída do primeiro transformador instalado a jusante não ultrapasse a tensão máxima de serviço, e que a tensão de saída do último transformador não fique abaixo da mínima tensão de serviço.

Definições

Tensão nominal de um sistema ou circuíto

É o valor nominal atribuído ao sistema ou circuíto de determinada classe de tensão, com a finalidade de sua conveniente designação.

Tensão nominal refere-se à tensão de linha (tensão de fase-fase) e não a tensão de fase para neutro, e aplica-se a todas as partes do sistema ou circuíto.

Tensão de serviço

É a tensão á qual são referidas as características de operação e desempenho do equipamento.

Circuíto regulado

É o circuíto conectado à saída  do regulador de tensão e no qual se deseja controlar a tensão, a relação de fases ou ambos. A tensão pode ser mantida constante em qualquer ponto do circuíto regulado.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • 6

Aterramento do neutro no padrão

Algumas concessionárias de energia elétrica adotam o aterramento do neutro no padrão de medição a fim de que correntes elétricas que retornam pelo neutro, devido a desbalanceamento de cargas, fluam pelo aterramento e não retornem para a rede de energia elétrica da concessionária.

padrao-de-entrada-monofasico-03-a_grande

Aterramento do neutro no padrão

As correntes elétricas que retornam pelo neutro comprometem o balanceamento de cargas do Sistema Elétrico de Potência – SEP, ocasionando sérios problemas tanto na Distribuição quanto na Transmissão de energia elétrica.

dr-05

Balanceamento de Cargas

Saiba mais.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

A Importância da Análise Preliminar de Risco – APR

Sempre deveremos antes de executar qualquer tarefa elaborar a Análise Preliminar de Risco – APR, a fim de identificar os riscos inerentes à tarefa e providenciar medidas de controle de riscos, sejam elas individuais ou coletivas, assegurando a saúde e integridade física dos trabalhadores.

images

Análise Preliminar de Risco

Ao elaborar a Análise Preliminar de Risco deveremos também planejar como o serviço deverá ser executado, quanto tempo a rede elétrica deverá ficar desenergizada, respeitar programação de dia e horário para execução, avisar com antecedência os setores envolvidos, quantas equipes e colaboradores serão necessários para execução da tarefa.

Por se tratar de uma técnica aplicável à todas as atividades, a técnica de Análise Preliminar de Risco é o fato de promover e estimular o trabalho em equipe e a responsabilidade solidária.

Análise de Riscos

Análise de Riscos

O objetivo da Análise Preliminar de Risco – APR é criar o hábito de verificar os itens de segurança antes de iniciar as atividades, auxiliando na prevenção dos acidentes e no planejamento das tarefas, enfocando os aspectos de segurança no trabalho.

Será preenchida de acordo com as regras de Segurança do Trabalho. “A Equipe somente iniciará a atividade, após realizar a identificação de todos os riscos, medidas de controle e após concluir o respectivo planejamento da atividade”.

Exemplo de Análise Preliminar de Risco - APR

Exemplo de Análise Preliminar de Risco – APR

A Análise Preliminar de Risco – APR é um documento que deve ser preenchido na presença de todos os colaboradores da equipe e por eles assinados, a fim de comprovar que estão cientes dos riscos que correm, das medidas de controle a serem tomadas e do planejamento de execução dos serviços, conforme dita a NR10.

Assista a esse vídeo muito instrutivo a respeito e faça uma reflexão sobre ele.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


Posts recentes

Desenvolvido por : TyttoSoft (11) 9466-02599