Localizando uma Fuga Corrente

  • 0

Localizando uma Fuga Corrente

Um parceiro de trabalho se deparou com uma fuga de corrente em um torno CNC.

Foi acionado por um cliente pois a máquina estava “dando choque” na carcaça.

A princípio a suspeita era de Eletricidade Estática. Depois de algumas medições descartou-se essa hipótese e verificou se o problema não estava com o motor – talvez uma bobina danificada.

Todos os testes possíveis e imagináveis foram feitos, sem sucesso.

Após isso, ao medir a corrente do condutor de aterramento, verificou-se que estava em 49.2 A.

Isso mesmo! 49,2 A de fuga de corrente ! Você não leu errado.

Conversando, chegamos à conclusão que uma corrente de fuga desse porte jamais poderia ser Eletricidade Estática. Isso é corrente de fase! Deve haver uma fase encostando na carcaça da máquina ou o eletricista anterior, quando fincou a haste no chão, acertou algum condutor subterrâneo, hipótese improvável pois 100% da rede elétrica do imóvel é aérea, em isolador roldana e eletrocalha.

Ponto de terra centelhando

Encontrou-se um ponto de aterramento que centelhava devido à alta corrente de fuga.

Decorrido algum tempo, encontramos um transformador 220/380V trifásico, onde alguém encontrou um ponto para derivar o neutro e o aterramento.

Aterramento Conectado ao Trafo

Achou! Quem mexeu anteriormente (a 2 ou 3 anos) na instalação, aterrou uma fase.

Haviam pelo menos cinco tornos CNC aterrados nesse circuito, construído com fio 2.5 mm². Ao ser percorrido pela corrente de 49.2 A começou a deteriorar, sendo que apenas o torno em evidência estava aterrado no circuito, os demais ficaram isolados. Devido a isso somente este torno dava choque na carcaça.

Após desenergizar o QDG, desligou-se a conexão de neutro e terra do terminal do transformador e a corrente de fuga sumiu.

Se considerarmos que a indústria trabalhe 8 horas por dia e 22 dias por mês, teremos uma economia estimada de 1905 kW/h por mês.

Fica o alerta de que nossa responsabilidade ao executar serviços em Eletricidade é muito grande. Um erro nosso em uma instalação elétrica pode custar a vida de uma pessoa.

Ação proposta ao cliente: refazer o circuito de aterramento com condutores elétricos apropriados bem como a malha de aterramento, fincando maior número de hastes e medição do valor ôhmico até chegar ao ideal.

Adolpho Eletricista


  • 0

O Coração da Baixada Santista

O CORAÇÃO DA BAIXADA SANTISTA

Usina Hidrelétrica Henry Borden, localizada no sopé da Serra do Mar, na Vila Light, em Cubatão – SP.

Usina Henry Borden

Desde o fim do Século XIX, a canadense Light cuidava da iluminação e fornecimento de energia dos Estados de São Paulo e Rio de Janeiro.

Tudo transcorria às mil maravilhas para a empresa quando em 1924 ocorreu uma grande seca em todo o Estado de São Paulo, causando a diminuição do nível dos rios e reservatórios que alimentavam as pequenas usinas da empresa e obrigando-a a realizar longos e significativos cortes no abastecimento de energia.
A situação rapidamente se encaminhava para o caos e toda a sociedade exigia uma resposta da light.

Foi aí que surgiu o “Projeto da Serra” e entrou em cena o genial engenheiro americano Asa White Kenney Billings, para construir uma nova Usina Hidrelétrica super poderosa, capaz de fornecer energia para praticamente todo o Estado. O primeiro passo era achar o local ideal para a construção, e após algumas pesquisas Billings decidiu pela cidade de Cubatão, por 3 motivos:

1 – Ficava entre as duas mais importantes cidades do Estado (São Paulo e Santos)

2 – Estava próxima ao complexo ferroviário que viabilizaria um transporte mais rápido e eficiente dos materiais para as obras,

3 – Desnível de 720 metros entre o topo da serra e o nível do mar.

Numa sacada genial, Billings propôs alterar o curso do Rio Pinheiros (que corria rumo ao interior) para desviá-lo até um enorme reservatório artificial que viria a ser construído próximo da foz do Rio das Pedras. Desse reservatório, a água desceria por enormes tubos até as turbinas que gerariam a energia. É nesse ponto que a grande altura de 720 metros faria toda a diferença. A água desceria com tamanha velocidade e pressão que geraria muita energia com bastante eficiência e pouco gasto.

É esse Sistema que você enxerga quando olha para a Serra do Mar e vê aqueles enormes tubos paralelos que a cortam de cima abaixo (dutos forçados).

Dutos Forçados

Assim, Asa Billings deu início às obras daquela que por muitos anos foi a principal geradora de energia do Estado de São Paulo. As atividades começaram oficialmente em 10 de outubro de 1926, com a inauguração do 1º gerador com 2 turbinas.

A partir daí, até 1950 foram inaugurados mais 7 geradores, cada um também com 2 turbinas, perfazendo uma capacidade total de 469 mega watts. Porém, a usina possui um sistema coringa, pensado para evitar a paralisação do fornecimento em caso de grandes calamidades, inclusive bombardeios. Trata-se de uma segunda usina subterrânea com 6 geradores, construída num enorme túnel de 120 metros de comprimento, 21 metros de largura e 39 metros de altura, escavado no maciço rochoso da Serra do Mar. Essa “usina reserva” possui capacidade operacional de 420 mega watts.

Represa Billings

Essa capacidade de geração de 889 mega watts é suficiente para abastecer toda a Baixada, Litoral Norte e praticamente toda a Grande São Paulo. Porém, nem tudo são flores; com o crescimento da Capital, seus rios foram se tornando cada vez mais poluídos, o que teve um efeito negativo muito especial em relação ao Rio Pinheiros, uma vez que o reservatório da Usina também servia para o abastecimento de água de consumo da Grande São Paulo.

Diante disso, numa não muito bem sucedida tentativa de conter o avanço da poluição, a captação de água para funcionamento da usina foi drasticamente limitada por lei a partir de 1992, passando a operar com apenas 25% de sua capacidade total, exceto no verão, onde o bombeamento de água é retomado e a Usina pode operar com capacidade plena.

Henry Borden foi presidente da Light a partir de 1946 e realizou importantes obras e investimentos na geração de energia no Estado. Seu nome foi dado à Usina após sua morte, que até então era conhecida apenas como Usina de Cubatão.

Asa White Kenney Billings teve seu nome eternizado no reservatório artificial que criou. Sim, estamos falando da famosa Represa Billings.


  • 0

Estação Transformadora – ET

Estação Transformadora – ET é utilizada para rebaixar tensão primária de distribuição em tensão secundária.

Na rede de distribuição aérea são construídas em postes, enquanto que na rede subterrânea, como o nome diz, sob o solo, com a denominação de Câmara Transformadora – CT.

Estação Transformadora Sistema Estrela

Podem ser utilizados tanto transformadores de distribuição do Sistema Delta como do Sistema Estrela.

Estação Transformadora Delta Fechado

Estações Transformadoras são projetadas de acordo com a carga declarada pelo(s) cliente(s) onde cargas declaradas até 69 kVA poderão ser atendidas com uma ET coletiva, com diversos clientes ligados no mesmo circuito secundário, já as cargas acima desse valor deverão ser atendidas por uma Estação Transformadora Individual, caso de Condomínios Residenciais ou por Cabine Primária – Indústrias.

Inúmeros Condomínios foram atendidos pelo Sistema Delta até 1995. Com a criação da ANEEL, ficou estabelecido a proibição de novos projetos de distribuição elétrica neste Sistema, sendo permitido apenas a manutenção do Sistema existente.

A partir dessa data todas as Estações Transformadoras deveriam ser projetadas no Sistema Estrela, pois é muito mais confiável que o Delta, sem contar o desbalanceamento que este último provoca no Circuito Primário de Distribuição, prejudicando-o.

Até os dias de hoje clientes de Baixa Tensão – BT são atendidos pelo Sistema Delta, pois a Estação de Distribuição que alimenta o circuito secundário existente é do referido Sistema.

A rede de distribuição secundária aérea pode ser construída em três formas, sendo elas:

  • Rede Horizontal: Construção em cruzetas de madeira, polimérica ou aço. Este tipo de construção foi extinta pelas Concessionárias de Energia devido ao alto custo de construção/manutenção, porém ainda é encontrado em alguns locais.
  • Rede Vertical: Construção em isoladores roldana, conforme figura abaixo.
  • Cabo pré reunido.
Estrutura S45(4) – Final de Rede secundária em 4 fases (à esquerda) e S145 – Final de Rede em cabo pré reunido.

  • 0

Segurança em Instalações Elétricas

Texto de Adriano Smid Bianchi para o Grupo Eletricidade, Teoria na Prática, do Facebook, administrado pelo parceiro e amigo Kurt Meister.

A ambos, o meu muito obrigado pela colaboração e autorização da divulgação desse texto.

As grafias em itálico são de minha autoria, sendo mantido o texto original.

O Brasileiro não conhece a Cultura de Segurança em Instalações Elétricas. Para muitos vale mais aplicar a “Lei de Gerson” (Lei do menor esforço) e torcer para que o Universo não aplique a “Lei de Murphy” (Se houver uma probabilidade de dar errado, vai dar errado).

Digo isso pois é normal vermos postagens em que faltam sistemas e dispositivos de segurança como aterramento, IDR, DDR, DPS e o profissional sempre usa a desculpa “mas o cliente não quis”, “iria ficar muito caro”, “o cliente disse que não precisa, que é frescura” e coisas do tipo.

Some à resistência do cliente o fato de não termos qualquer tipo de fiscalização, como ocorre em outros países, em que a obra ou a reforma é paralisada/embargada caso as Normas não sejam cumpridas. E isso faz com que profissionais, inclusive eu, tenham que abdicar do cumprimento estrito da Norma porque “senão vem outro e faz”.

Conscientização

Mas cabe a nós nos conscientizarmos e concientizar os clientes que segurança não é um custo adicional e que os sistemas de segurança devem ser implementados pois são essenciais, e cada um tem sua finalidade e pode evitar prejuízos maiores.

Se o cliente pudesse, nem mesmo disjuntores ele instalaria para poder reduzir os custos, mas sabe por que ele instala? Ele o faz porque faz parte da cultura de segurança dele.

Ele sabe que sua residência estará mais segura se ele tiver um disjuntor para interromper o circuito em caso de problemas e sabe, principalmente, que o disjuntor pode evitar que a casa dele pegue fogo. O medo de um prejuízo financeiro maior que o custo da instalação dos disjuntores é determinante.

DPS

Análise de Riscos

Por isso precisamos sempre informar o cliente da proteção que cada sistema de segurança traz e, principalmente, mostrar os riscos e os prejuízos que podem ocorrer se ele não usar, ou usar de maneira incorreta.

É sabido e difundido que o sistema de aterramento serve para evitar que equipamentos com carcaça metálica, chuveiros, etc. “deem choque”, porém hoje em dia é comum que alguns equipamentos utilizem o sistema de aterramento para drenar a eletricidade estática, para proteger outros componentes de descargas indesejadas ou até por meio de varistores (DPS) fazerem uma última linha de proteção contra surtos.

Se o equipamento não estiver aterrado, essas funcionalidades se perdem e o mesmo fica mais exposto a problemas. Mostre para o cliente que ele pode e deve evitar alguns prejuízos.

Prevenção

Com o DPS também é assim.

Todo cliente já ouviu falar de uma descarga atmosférica que queimou tudo na casa de alguém.

Também já soube que no retorno do desligamento da rede da concessionária causou a queima de uma geladeira, uma TV, ou um daqueles eletrônicos ultra mega super blaster que tinha acabado de chegar.

Fale para ele como o sistema funciona e como ele pode minimizar as chances disso acontecer. Até mesmo pequenos surtos de tensão, presentes em qualquer rede elétrica, vão sendo drenados imperceptivelmente, preservando a vida útil dos equipamentos.

Vamos tratar especialmente do dispositivo IDR. Muitos eletricistas “vendem” o IDR como em dispositivo para “evitar choque”, mas ele vai muito além disso.

Apesar de evitar alguns tipos de choque, a principal função do IDR é atuar em caso de fuga de corrente e, apesar disso parecer menos importante que “evitar choque”, essa que é a função dele e pode evitar enormes prejuízos ao cliente, inclusive salvar vidas.

Análise do Problema

Fui chamado por uma cliente que atendo há mais de um ano, que tem uma casa construída fazem uns 4 anos.

Essa cliente relatou-me que a conta de energia dela vem aumentando mês a mês, indo para R$ 300,00, depois R$ 500,00, R$ 700,00, até que a última veio R$ 980,00.

Ela entrou em contato com a concessionária que mandou uma equipe que constatou que poderia estar ocorrendo uma fuga de corrente.

Fui ao local e conferi as medições dos colegas da concessionária e constatei que havia uma fuga de míseros 12,8 A, ou seja, eram cerca de 1625 W sendo jogados fora por hora.

Comecei a rastrear a fuga. Achei o circuito, fui isolando os pontos, até encontrar e corrigir o problema, onde o cabo da fase tinha contato com o cabo de um aterramento TT feito porcamente.

Perceptivelmente, o problema começou pequeno, mas foi aumentando com o aquecimento dos cabos causando o derretimento da isolação e aumento da área de contato.

A causa inicial do problema foi uma manutenção mal feita, com a eliminação de uma tomada, que segundo a cliente foi realizada pelo tio dela, sem conhecimento na área.

Mostrei então para a cliente como um IDR instalado teria evitado tamanho prejuízo, detectando a fuga de corrente logo no princípio. O resultado disso é que já estamos combinando a reforma do quadro para a instalação dos dispositivos de segurança.

Pra finalizar, fica também o alerta quanto ao aterramento TT, principalmente esses feitos sem critério, com poucas ou apenas uma haste.

Um aterramento TN também teria evitado o prejuízo, pois quando a fase encostasse no aterramento o disjuntor detectaria uma corrente de curto, fazendo o acionamento magnético e demonstrando que tinha algo errado no circuito.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul do Estado de São Paulo.

11 96898.4344


  • -

ELETRICISTA EM SÃO PAULO

Eletricista em São Paulo

ELETRICISTA EM SÃO PAULO. CONSTRUÇÃO E REFORMA DE PADRÃO DE ENTRADA, INSTALAÇÃO ELÉTRICA, PROJETO ELÉTRICO RESIDENCIAL, PREDIAL E INDUSTRIAL. ART DE ELÉTRICA E CIVIL. CONSTRÇÃO, MANUTENÇÃO E REFORMA DE ENTRADA PRIMÁRIA.

Atuamos com construção, manutenção e reforma de instalação elétrica residencial, predial, empresarial, comercial e industrial.

Especialidade em padrão de entrada de medição de energia elétrica, reformas de instalação, projetos e entrada primária.

Nosso time é composto por profissionais qualificados, habilitados e autorizados a trabalhar com energia elétrica, tanto em baixa quanto em media tensão.

Não assuma riscos desnecessários confiando a instalação elétrica de sua edificação a um profissional que não inspire confiança.  

Todo trabalho relacionado a energia elétrica deverá ser executado por um profissional qualificado, capacitado e autorizado para esse fim.  

Quem é considerado qualificado? Todo profissional que fizer treinamentos específicos na área de atuação, sendo considerado apto em nota e frequência e obtiver o certificado de conclusão de curso.  

E capacitado? É o profissional qualificado que foi treinado sob a supervisão de um profissional habilitado e irá trabalhar sob supervisão de um profissional habilitado.  

Autorizado é o profissional qualificado ou habilitado que participou de treinamento de NR10, sendo aprovado em nota, frequência e detector do certificado de conclusão de curso.  

Habilitado é o profissional que possui registro no CREA – Conselho Regional de Engenharia e Agronomia.

Compromisso com a qualidade do serviço, preservação da privacidade do cliente e bom relacionamento.

Garantia de bons serviços!

Eletricista na Zona Sul de São Paulo e na Grande São Paulo.

Adolpho Eletricista – Seu Eletricista em São Paulo!

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO

ELETRICISTA EM SÃO PAULO


  • 2

Esquemas de Aterramento TN, TT e IT

Aterramento Funcional Esquema TT

Dependendo da maneira como um sistema é aterrado e qual for o dispositivo de proteção utilizado, os esquemas de aterramento em baixa tensão são classificados pela NBR-5410 em três tipos:

  • Esquema TN
  • Esquema TT
  • Esquema IT

Onde:

1ª letra – Situação do neutro em relação à terra:

  • T = um ponto diretamente aterrado;
  • = isolação de todas as partes vivas em relação à terra ou aterramento de um ponto através de impedância;

2ª letra – Situação das massas da instalação elétrica em relação à terra:

  • = massas diretamente aterradas, independentemente do aterramento eventual de um ponto da alimentação;
  • = massas ligadas ao ponto da alimentação aterrado (em corrente alternada, o ponto aterrado é normalmente o ponto neutro);

Outras letras (eventuais) – Disposição do condutor neutro e do condutor de proteção:

  • S = funções de neutro e de proteção asseguradas por condutores distintos;
  • C = funções de neutro e de proteção combinadas em um único condutor (PEN: condutor de proteção e neutro).

Esquema TN

No esquema TN o neutro da fonte é diretamente aterrado, sendo as massas ligadas a esse ponto através de condutores de proteção.

Podem ser de três tipo:

1A – Esquema TN-S: o condutor neutro e proteção são distintos;

1B – Esquema TN-C: os condutores neutro e de proteção são combinadas em um único condutor (PEN);

1C – Esquema TN-C-S: o condutor neutro e proteção são combinados em uma parte da instalação e separados em outra parte.

2 – Esquema TT

Possui o neutro diretamente aterrado, estando as massas da instalação ligadas a um eletrodo de aterramento independente do eletrodo de aterramento do neutro.

3 – Esquema IT

O neutro é isolado da terra ou conectado através da inserção de uma impedância de valor elevado (resistência ou indutância). As massas são aterradas em eletrodos de aterramento distintos do eletrodo de aterramento da alimentação.

Existe uma necessidade diferente de aterramento para cada edificação, equipamento e sistema elétrico, a qual varia conforme a finalidade, o método de construção e/ou fabricação e a presença de pessoas em contato com a massa ou no entorno.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Eletricista em São Paulo 96898.4344

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo

Eletricista em São Paulo


  • -

Solicitação de Serviços Técnicos às Concessionárias

As solicitações de serviços técnicos às concessionárias de energia elétrica devem seguir certos procedimentos por elas exigidos.

Os documentos devem ser reunidos e entregues em uma loja da concessionária pelo interessado ou por um procurador.

Em caso de procuração, deve ser reconhecido firma da assinatura do interessado em Cartório de Notas.

Padrão de Entrada Individual – Caixa tipo E

Nos casos de Ligação Nova, Modificação, Alteração de Carga ou serviços similares em padrão de entrada individual, o cliente poderá ser atendido com carga até 75 kw em baixa tensão.

Deverão ser apresentados:

  • Relação de cargas,
  • Croqui do local,
  • Cópia da capa do IPTU,
  • Projeto elétrico do padrão de entrada (quando necessário),
  • ART (quando necessário) e cópia do registro no CREA do responsável pela sua emissão,
  • Cópia do RG e CPF do interessado.
  • Caso o interessado já possua ligação, apresentar cópia da fatura de energia elétrica.
  • Em caso de ligação em coluna ou fachada, apresentar ART recolhida por Engenheiro Civil, Arquiteto, Técnico em Edificações ou profissional habilitado.
  • Em caso de procurador, apresentar a procuração, RG e CPF do procurador.
  • O prazo para análise do processo pela concessionária é de até 30 dias.

Padrão de Entrada Coletiva

Quando a solicitação técnica envolver padrão de entrada coletiva, cada unidade consumidora não poderá ultrapassar a carga de 20 kw.

Se o ramal de entrada for igual ou superior a 35 mm², deverá ser apresentado ART de profissional habilitado e cópia do registro no CREA, além de todos os documentos acima mencionados.

O prazo pra atendimento é o mesmo.

Se já houver rede secundária de distribuição no local que comporte a carga a ser instalada, o processo será liberado sem custo para o cliente.

Caso não haja rede secundária ou esta não comporte a carga a ser instalada, deverá ser executado construção ou reforma de rede secundária de distribuição pela concessionária.

O custo da construção ou reforma de rede secundária será cobrado do interessado, proporcional à carga a ser instalada, podendo até a concessionária assumir o custo total da obra dependendo da carga a ser instalada pelo cliente.

Se o futuro consumo, em kwh, estimado através da carga a ser instalada pelo cliente cobrir o investimento financeiro feito pela concessionária no prazo de cinco anos, esta assumirá o valor total dos serviços a serem executados.

Caso este consumo estimado não cubra o valor do investimento em cinco anos, será cobrado do cliente o valor proporcional à diferença do consumo x investimento.

O prazo para execução dos serviços é de até 90 dias a contar do aval do cliente.

A partir da aprovação pela concessionária para a construção do padrão de entrada para Ligação Nova, será agendado data para a ligação do padrão.

Se o cliente já possuir uma ligação, será agendada uma data para execução de Ligação Provisória, onde será desligada a instalação atual e retirado(s) o(s) medidor(es) e o cliente terá 7 dias para executar os serviços.

Os 7 dias de Ligação Provisória serão cobrados através de uma tarifa definida pela concessionária, que virá incluso na próxima fatura.

O padrão de entrada deverá ser construído de acordo com as normas e procedimentos técnicos da concessionária local, sob pena da ligação ser rejeitada e o cliente ter que executar as alterações exigidas pela concessionária.

Enquanto a construção do padrão de entrada não estiver de acordo com as normas e procedimentos técnicos da concessionária, não será ligado.

Todo e qualquer serviço deverá ser executado observando-se as Normas de Segurança no Trabalho com Eletricidade – NR10.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Estruturas Primárias Básicas – RDA

Irei tratar neste artigo de Estruturas Primárias Básicas utilizadas na Rede de Distribuição Aérea.

Em cada simbologia, a letra “X” representa o número de fases (1, 2 ou 3) existentes no circuíto primário em questão.

ESTRUTURA BECO

B4(3) – Ponto Mecânico

B1(X) – Estrutura Beco (0x3) construção em cruzeta para ângulos até 15º em cabo 50 mm² e 10º em cabo 120 mm².

B2(X) –  Estrutura Beco (0x3) construção em cruzetas para ângulos de 15º a 30º em cabo 50 mm² e 10º a 20º em cabo 120 mm².

B3(X) – Estrutura Beco (0x3) construção em cruzetas para Final de Linha.

B4(X) – Estrutura Beco (0x3) construção em cruzetas para ponto mecânico – redução de tensão mecânica dos cabos.

Notas: 1. As demais estruturas serão obtidas por composição das estruturas apresentadas.

2. 0x3 significa que as 3 fases estão para o lado da via.

ESTRUTURA MEIO BECO

M4(3) – Ponto Mecânico

M1(X) – Estrutura Meio Beco (1×2) construção em cruzeta para ângulos até 15º em cabo 50 mm² e 10º em cabo 120 mm².

M2(X) – Estrutura Meio Beco (1×2) construção em cruzetas para ângulos de 15º a 30º em cabo 50 mm² e 10º a 20º em cabo 120 mm².

M3(X) – Estrutura Meio Beco (1×2) construção em cruzetas para Final de Linha.

M4(X) – Estrutura Meio Beco (1×2) construção em cruzetas para ponto mecânico – redução de tensão mecânica dos cabos.

Notas: 1. As demais estruturas serão obtidas por composição das estruturas apresentadas.

2. 1×2 significa que 2 fases estão para o lado da via e uma para o lado da calçada.

TRAVAMENTO DE CENTRO

Travamento de Centro

N3 – Estrutura com travamento de centro – construção em cruzetas para 3 fases, para que não gire quando aplicada tensão mecânica. Utilizada somente em locais onde não houver condições para estaiamento do conjunto de cruzetas.

PINO DE TOPO

PINO DE TOPO

PINO DE TOPO

U1 – Construção para apenas uma fase em RETA.

U2 – Construção para apenas uma fase em ÂNGULO.

U3 – Construção para apenas uma fase em FINAL DE LINHA.

U4 – Construção para apenas uma fase em PONTO MECÂNICO.

REDE COMPACTA

RC1 – RETA

RC1 – Construção em rede compacta – spacer cable – RETA.

RC2 – Construção em rede compacta – spacer cable –  ÂNGULO.

RC3 –  Construção em rede compacta – spacer cable – FINAL DE LINHA.

RC4 – Construção em rede compacta – spacer cable – PONTO MECÂNICO.

RC5 – Construção em rede compacta – spacer cable – RETA com DERIVAÇÃO em 90º.

RC6 – Construção em rede compacta – spacer cable – RETA com DERIVAÇÃO em ÂNGULO.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Iluminação Pública

Iluminação pública se refere à iluminação de ruas, avenidas, travessas, praças e rodovias.

Comando em Grupo

As primeiras são de responsabilidade das Prefeituras, as últimas são de responsabilidade do Estado ou Federação, se a rodovia for Estadual ou Federal.

A iluminação pública pode ser acionada por dois métodos: comando individual ou comando em grupo.

Comando Individual

O comando de acionamento individual fica alocado na parte superior da luminária, composto basicamente por um relé fotoelétrico ou fotocélula, que na presença de luz interrompe a circulação de energia elétrica, mantendo a lâmpada apagada.

Comando individual

Na figura acima podemos observar um ponto azul na parte superior da luminária. Trata-se do rele fotoelétrico do comando individual.

Quando escurece, passa a conduzir energia elétrica, acionando o comando para acender a lâmpada da luminária.

A alimentação é feita pela rede secundária de distribuição de energia elétrica das concessionárias ou por Estações Transformadoras exclusivas para iluminação pública.

Poderá ser alimentada também por energia solar.

O tipo de alimentação dependerá da conveniência técnica da região.

A tensão de alimentação geralmente é 220 V.

As lâmpadas utilizadas podem ser vapor de sódio (75, 125 e 250 W), vapor de mercúrio (250 e 400 W) e mais recentemente luminárias de led 50 W.

Comando em Grupo

O circuíto de iluminação pública controlado através de comando em grupo comporta diversas luminárias, que acendem ou apagam simultaneamente.

É alimentada por uma Estação Transformadora exclusiva para iluminação pública e com circuíto independente, em 220 V.

O transformador exclusivo para iluminação pública é de propriedade da prefeitura e não pode ser utilizado para outro fim.

Junto ao transformador da Estação Transformadora fica alocado um relé fotoelétrico e uma chave magnética para acionamento do circuíto elétrico.

Reator

Na base do braço de cada luminária, junto ao poste, encontra-se um reator para acionamento da lâmpada da luminária, quando estas forem a vapor de sódio ou mercúrio; para luminárias de led não existe reator.

 

Os circuítos antigos de iluminação pública eram construídos com dois fios de cobre 6 AWG em paralelo, distanciados 20 cm um do outro.

Os circuítos projetados e construídos após a década de 80 são de cabo de alumínio duplex 4 mm², conforme podemos observar na figura acima.

Iluminação Ornamental

Além das luminárias tipo poste, existem as luminárias ornamentais, que são utilizadas em canteiros centrais de avenidas, praças, rodovias e nas regiões onde a alimentação elétrica é subterrânea.

Construção e Manutenção

A responsabilidade pela construção e manutenção dos circuítos de iluminação pública são das prefeituras.

O  custo com implantação do sistema, desde o projeto até a execução física da obra, fornecimento de materiais como transformadores, unidades de iluminação pública, lâmpadas e todos os demais materiais utilizados na construção e manutenção do sistema de iluminação pública é das prefeituras.

Transformador Sistema Delta

O custo com postes de concreto ou madeira é proporcional, tendo em vista que as concessionárias de energia elétrica, telefonia e TV a cabo também fazem uso destes. Denomina-se uso mútuo.

Iluminação Ornamental

Os postes para iluminação ornamental devem ser fornecidos pelas prefeituras.

Consumo

O consumo é calculado através da quantidade de lâmpadas que compõe um circuito multiplicado pela sua potência.

Devido a divergências no valor da fatura mensal de iluminação pública, estão sendo instalados pelas Concessionárias de Energia Elétrica medidores de watt hora nos circuítos de iluminação pública, a fim de obter-se o valor efetivamente consumido.

A responsabilidade pelo pagamento das faturas de energia elétrica relativas a iluminação pública são de responsabilidade das prefeituras, porém esse valor é repassado para os munícipes através de uma taxa cobrada na fatura de energia elétrica mensal sob nome de COSIP – Consumo de Iluminação Pública.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Conheça o Sistema Estrela de Distribuição de Energia Elétrica


O Sistema Estrela é composto por
 um transformador (trafo) trifásico alimentado pelas 3 fases do circuíto primário de distribuição de energia elétrica.

As buchas primárias H1, H2 e H3 são alimentadas pelas 3 fases primárias, protegidas por chaves fusíveis (Matheus) e elos especificados de acordo com a potência do trafo.

Nas buchas de saída secundária X0, X1, X2 e X3 obteremos as tensões de saída, conforme esquema abaixo:

Esquema de Ligação Sistema Estrela

O sistema está alimentado em 13.8 kV, pois as fases são D, E e F, assunto abordado no artigo sobre Sistema Delta.

A bucha X0 corresponde ao NEUTRO do sistema estrela, X1 à fase A, X2 fase B e X3 fase C.

As tensões nominais entre Neutro e Fase A, Neutro e Fase B, Neutro e Fase C são iguais a 127 V e as tensões nominais de linha iguais a 220 V (sistema 127/220 V).

As fases A, B e C são mais conhecidas na indústria por R, S e T.

Esquema de um Transformador Estrela

No sistema estrela 220/380 V a tensão nominal entre Neutro e Fase é de 220 V, e a tensão nominal de linha é 380 V.

A expressão utilizada para cálculo de tensão no sistema trifásico é a seguinte:

onde: VFN – tensão de fase neutro

VFF – tensão de fase fase ou tensão de linha

V3 = 1.73 (valor aproximado, pois trata-se de dízima periódica)

De acordo com a estrela formada pelas 3 bobinas secundárias (figura acima), notamos que o ângulo de defasagem entre as Fases A, B e C é de 120º, o que mantem as tensões defasadas conforme figura abaixo:

Gráfico de Defasagem de Tensão Trifásica

Nota do Autor: Tensão RMS, do inglês Root Mean Square (Raiz Média Quadrática) ou Valor Eficaz são as tensões de linha ou de fase.

Analogia entre Sistema Estrela e Sistema Delta

No Sistema Estrela, por apresentar tensões equilibradas, conseguimos fazer um balanceamento de cargas muito superior ao Sistema Delta, que apresenta tensões desequilibradas.

Devido ao desequilíbrio entre as tensões secundária, o Sistema Delta gera um desbalanceamento de cargas muito grande no SEP – Sistema Elétrico de Potência, prejudicando-o, enquanto que no Sistema Estrela, por apresentar tensões equilibradas, conseguimos balancear as cargas com maior facilidade, mantendo o SEP mais estável e gerando um número menor de manutenções nos circuítos de distribuição, transmissão e na geração de energia elétrica.

Conclusão

O Sistema Estrela é infinitamente melhor que o Sistema Delta em todos os aspectos.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • 10

Sistema Delta de Distribuição de Energia Elétrica

Os transformadores do Sistema Delta (Triângulo) são monofásicos – alimentados por apenas uma fase primária.

A tensão nominal entre fase/neutro é 115 V.

A tensão de linha – fase/fase – nominal é 230 V.

O cálculo para tensão de linha no Sistema Delta é:

VL = 2 . VFN

Onde: VL = tensão de linha

VFN = tensão de fase/neutro

Na figura abaixo, temos o exemplo de um transformador (trafo) do sistema delta, alimentado em 13.8 kV.

Como saber qual a tensão de alimentação? Simples: A fase primária de alimentação do trafo é a fase D.

Recordando

Classe  5 kV – Tensão de Trabalho – 3.8 kV – Fases A, B, C.

Classe 15 kV – Tensão de Trabalho – 13.8 kV – Fases D, E, F.

Classe 25 kV – Tensão de Trabalho – 24.5 kV – Fases G, H, I.

Classe 35 kV – Tensão de Trabalho – 34.5 kV – Fases J, K, L.

De acordo com a letra que define a fase em que o equipamento está ligado, sabemos a Classe de Tensão e a Tensão de Alimentação.

De acordo com o esquema abaixo, verificamos que a bucha primária H1 é ligada na fase D e o bucha H2 é aterrada para gerar diferença de potencial (ddp) entre as extremidades da bobina primária, a fim de gerar campo magnético e rebaixar a tensão através da bobina secundária.

Sempre deverá ser instalada chave fusível (Matheus) entre a fase e a bucha H1 do trafo.

A capacidade do elo fusível será determinada de acordo com a potência do trafo.

Sistema Delta LUZ

DELTA LUZ

A bobina secundária tem três pontos de derivação, x1, x2 e x3, sendo x1 e x3 as extremidades da bobina e x2 o ‘center tap’, de onde é gerado o neutro – potencial zero em condições ideais.

É praticamente impossível manter o condutor neutro em potencial ‘zero’ devido ao enorme desbalanceamento de cargas existente no Sistema Elétrico de Potencia.

NOTAS: 

1 -Toda a malha de neutro das concessionárias de energia elétrica são interligadas e aterradas em pontos determinados, inclusive nas ETD’s (Estações Transformadoras de Distribuição), também conhecidas por Subestações, independentemente se o Sistema é Delta ou Estrela.

2 – O Neutro do circuíto primário de distribuição é o mesmo do circuíto secundário. Não existem dois condutores Neutro (primário e secundário), somente um, chamado de Neutro Geral.

Veja mais sobre balanceamento de cargas , artigo redigido por mim, Adolpho Eletricista, para o blog Saber Elétrica.

Toda a malha de neutro é aterrada, a fim de manter o neutro o mais próximo possível do potencial zero.

O Sistema Delta Luz é eficiente apenas para residências, comércios e pequenas empresas que não necessitam da quarta fase (quarta, pois o neutro é considerado como fase) para trabalhar. Quando o cliente necessita da quarta fase, com o maior motor até 5 CV, ‘abre-se’ o delta, conforme figura abaixo.

Sistema Delta Aberto

DELTA ABERTO

Para ‘abrir o Delta’, adiciona-se outro trafo monofásico – F1 – porém ligado em outra fase primária – fase E – com a diferença de que o x2 ficará em aberto, e deverá ser obedecido o esquema de ligação de x1 do LUZ com o x3 do FORÇA, ou x3 do LUZ com o x1 do FORÇA.

Caso haja inversão na ligação, x1 com x1 e x3 com x3, os motores irão girar ao contrário e sofrerão danos.

As tensões de fase neutro e tensão de linha permanecem as mesmas, 115/230 V, porém a tensão nominal da quarta fase com o neutro será 190 V, e tensões de fase com 4º fio será de 230 V nominal.

O 4⁰ fio SOMENTE deverá ser utilizado para alimentar motores e cargas trifásicas, NUNCA para alimentar cargas mono ou bifásicas, devido a diferença nos valores de tensão nominal e do ângulo de defasagem das tensões de fase e 4º fio.

Caso isso aconteça, haverá queima de equipamentos.

Esquema de Ligação Delta Aberto

A pergunta mais frequente é: “como se chega ao valor de 200 V entre neutro e 4º fio?”

Analisando o esquema acima, podemos verificar que temos 1/2 bobina do trafo de LUZ (de x2 até x1 ) mais 1 bobina inteira do FORÇA 1 (de x3 até x1), totalizando 1 bobina e 1/2, o que gera 200 V entre NEUTRO e 4º fio.

A tensão de 4º fio é calculada da seguinte forma:

V4⁰fio = 115 * raiz 3 = 115 * 1.73 = 198V

O trafo de FORÇA sempre deverá ser de potência inferior ao trafo de LUZ, ou no máximo de mesma potência.

Quando o cliente tem a necessidade de acionar motores acima de 5 CV, o Delta deverá ser ‘fechado”, obtendo-se maior potência do banco de transformadores.

Sistema Delta Fechado

DELTA FECHADO

Para ‘fechar’ o Delta, acrescenta-se mais um trafo monofásico – F2, alimentado por outra fase primária (F).

As tensões nominais de fase neutro, linha e 4º fio não se alteram.

Deve ser observado atentamente o esquema de ligações: caso o x1 do F1 esteja ligado no 4º fio, o x3 do F2 também deverá ser ligado à 4º fio, e o x1 do F2 ligado ao x3 do LUZ.

Se o x3 do F1 estiver ligado na 4º fio, o x1 do F2 deverá ser ligado ao 4º fio e o x3 do F2 ligado ao x1 do LUZ.

Caso houver erro nas ligações, x3  do F1 com x3 do F2 e x1 do F2 ligado com x1 do LUZ, provocará curto circuito entre fases, e quando for ligar o Delta Fechado irá estourar os elos fusíveis de proteção das três fases do banco de trafos e os três elos fusíveis da proteção do circuíto. Caso o circuíto seja protegido por Religadora Automática ou Seccionalizadora, elas irão operar e desligar o circuíto primário. Caso não haja proteção no circuíto antes do banco de trafos, irá desligar o circuíto primário na ETD – Estação Transformadora de Distribuição (subestação).

Os trafos de FORÇA deverão ser de potências iguais e inferiores ou no máximo iguais ao trafo de LUZ.

Quem determinará a potência dos trafos a serem instalados será o departamento técnico da concessionária após análise do projeto elétrico e relação de cargas apresentado pelo cliente quando do pedido de ligação, acréscimo de carga ou modificação.

Sistema Delta Fechado

São encontrados transformadores do Sistema Delta ligados na mesma fase primária. Nesses casos, são dois transformadores de LUZ ligados em paralelo e suas potências se somam. Esse procedimento é utilizado quando necessita-se de um banco de maior potência na LUZ e não existe trafos comercializados nessa potência.

Exemplo: Necessita-se de um banco de trafos de LUZ de 200 kVA. Instala- se dois trafos de 100 kVA em paralelo para obter-se 200 kVA.

Os trafos Delta existentes nas redes de distribuição são de 5, 10, 15, 25, 37.5, 50, 75 e 100 kVA, porém os comercializados atualmente são apenas os de 10, 25, 50 e 100 kVA.

De acordo com Portaria da ANEEL – Agência Nacional de Energia Elétrica, a partir da década de 90 ficou proibido o projeto de Estações Transformadoras de Distribuição do Sistema Delta, permitindo-se apenas manutenções nas existentes. As Estações Transformadoras de Distribuição projetadas a partir do vigor da Portaria deverão ser do Sistema Estrela, com o propósito de melhorar o balanceamento de carga dos circuítos primários de distribuição e dos circuítos de transmissão.

Vantagens do Sistema Delta

A única vantagem do Sistema Delta é o custo de implantação do sistema, pois com apenas uma fase primária obtém-se tensão secundária para atender aos clientes residenciais, comerciais e empresariais que não necessitam de rede trifásica. Com um custo muito menor que o Sistema Estrela atinge-se o objetivo.

Desvantagens do Sistema Delta

O Sistema Delta gera um desbalanceamento de cargas muito grande no Sistema Elétrico de Potência – SEP, exigindo medições constantes de corrente elétrica das fases primárias de distribuição e de transmissão, muitas vezes sendo necessário baldear transformadores de uma fase para outra a fim de balancear as cargas dos circuítos.

Leia também Sistema Estrela

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Saiba o Que é Religadora Automática e como Funciona

A Religadora Automática – RA,  é um equipamento automatizado de manobra instalado nas redes de distribuição de energia elétrica, normalmente em circuitos primários de 13.8, 27 e 36 kV.

Religadora Automática em Poste

Estão predominantemente localizadas na rede de distribuição primária, entretanto, para restabelecer as interrupções no fornecimento de tensão com maior eficácia e rapidez, elas também são encontrados em Estações Transformadoras de Distribuição – ETD, também conhecidas como subestações, operando em coordenação com uma seccionadora automática ou com um disjuntor.

Religadora Automática em ETD

A RA possui duas funções básicas no sistema de distribuição: confiabilidade e proteção de sobrecorrentes. Elas são frequentemente utilizadas para aumentar a confiabilidade do sistema elétrico de distribuição de energia.

É uma solução econômica para seccionamento das redes de energia elétrica de distribuição, e muitas vezes é utilizada em locais onde a coordenação com outros equipamentos de proteção e manobra é difícil. É adequada para utilização em redes de distribuição aérea de média tensão, em coordenação com a proteção automática do circuito religador.

Seu princípio de funcionamento se baseia na detecção automática de falha na rede elétrica, interrompendo o circuito elétrico temporariamente. Após um período pré-configurado, a RA restabelecerá automaticamente a energia na rede elétrica, verificando se a falha no circuíto ainda persiste. Caso persista, ela desligará e após determinado tempo religará novamente.

Pode ser programada para duas tentativas de religamento rápidas – de 10 a 15 segundos cada operação e duas tentativas retardadas – de 20 a 30 segundos, ou uma tentativa rápida e três retardadas, ou de acordo com a necessidade do circuíto elétrico onde será instalada.

Caso a falha tenha sido regularizada após a primeira operação, a RA se manterá ligada e o circuíto elétrico será restabelecido, sem a necessidade de intervenção de profissionais; caso contrário, ela desligará e após o tempo programado, tentará religar novamente. O número máximo de tentativas de religamento do circuíto é quatro operações. Caso o religamento não tenha sucesso, uma equipe de profissionais deverá comparecer ao local a fim de regularizar a falha e religar o equipamento.

São instaladas geralmente em zonas arborizadas,

Galhos de Árvores

onde a incidência de galhos na rede de distribuição é grande, o que provoca o desligamento do circuíto. Como o tempo que o galho fica sobre a rede geralmente é curto, provavelmente na primeira tentativa de religamento o galho já saiu da rede e o circuíto é restabelecido.

Trabalho em Linha Viva

Uma outra aplicação da Religadora Automática é bloquear o religamento do circuíto elétrico. Quando equipes de trabalho em linha viva (energizada) irão trabalhar além RA, utiliza-se a função de bloqueio, pois caso aconteça algum acidente durante o trabalho, ela irá desligar e não religará novamente. Após executados os serviços, retira-se a RA da condição de bloqueio.

Pode ser utilizada também para seccionar o circuíto elétrico para manutenções em linha morta (desenergizada).

Trabalho em Linha Morta

As operações de desligamento, religamento e bloqueio da RA podem ser executadas através de equipamentos específicos para manobra por profissionais capacitados, ou por automação (operação à distância).

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Regulador de Tensão Tipo Poste – Média Tensão

Reguladores de tensão tipo poste são equipamentos instalados em ramais longos de circuítos primários que alimentam regiões de baixa densidade de carga, principalmente em zonas suburbanas e rurais onde a regulação de tensão natural do circuíto é prejudicada.

Os reguladores são monofásicos ou trifásicos, o que permite a sua utilização em ramais de circuítos primários mono, bi ou trifásicos.

Regulador de Tensão Monofásico

É programado para entrar em funcionamento quando a tensão primária estiver abaixo ou acima dos limites de tensão primária preestabelecidos (+10% ou -10%).

Os reguladores de tensão monofásicos podem ser instalados em linhas monofásicas ou formando bancos em montagem bi ou trifásicas nas redes primárias. Sua montagem requer em sua ligação a identificação dos lados fonte/carga (source/load).

O comando do regulador de tensão é feito por um sensor de nível de tensão e de compensação de queda de tensão do trecho do circuíto considerado que possibilita o ajuste automático da posição do regulador, elevando ou abaixando, na saída do

Banco de Religadores Monofásicos

regulador de tensão, a tensão que recebe na entrada, de tal forma que, teoricamente, em um determinado ponto do circuíto primário a tensão é constante.

Calcula-se a compensação do regulador de tensão de forma que a tensão máxima de saída do primeiro transformador instalado a jusante não ultrapasse a tensão máxima de serviço, e que a tensão de saída do último transformador não fique abaixo da mínima tensão de serviço.

Definições

Tensão nominal de um sistema ou circuíto

É o valor nominal atribuído ao sistema ou circuíto de determinada classe de tensão, com a finalidade de sua conveniente designação.

Tensão nominal refere-se à tensão de linha (tensão de fase-fase) e não a tensão de fase para neutro, e aplica-se a todas as partes do sistema ou circuíto.

Tensão de serviço

É a tensão á qual são referidas as características de operação e desempenho do equipamento.

Circuíto regulado

É o circuíto conectado à saída  do regulador de tensão e no qual se deseja controlar a tensão, a relação de fases ou ambos. A tensão pode ser mantida constante em qualquer ponto do circuíto regulado.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

Dispositivo de Proteção Contra Surto – DPS

Os surtos são dificilmente observáveis e têm múltiplas consequências sobre equipamentos e processos. Alguns são sérios, com riscos de lesões às pessoas, enquanto que outros afetam apenas os equipamentos.

Os Dispositivos de Proteção contra Surtos – DPS são destinados a proteção dos equipamentos eletroeletrônicos contra os efeitos diretos e indiretos causados pelas descargas atmosféricas.

O DPS é projetado para limitar sobretensões transitórias de origem atmosférica e desviar correntes de surto à terra, de modo a limitar a amplitude dessa sobretensão a um valor que não seja perigoso para a instalação elétrica e equipamentos.

Devem ser instalados conforme esquema de ligação abaixo:

Esquema de Ligação para DPS

Classes de DPS

Classe I – Proteção contra sobretensões causadas por descargas atmosféricas diretas, grande capacidade de escoamento, recomendados para instalações em locais de alta exposição à descargas atmosféricas,  na entrada da distribuição elétrica das edificações com SPDA – Sistema de Proteção Contra Descargas Atmosféricas.

Classe II – Tem capacidade de escoamento menor que o do Classe I, recomendados para proteção das instalações elétricas e equipamentos eletroeletrônicos em edificações sem SPDA, mas que podem sofrer os efeitos indiretos das descargas atmosféricas.

Classe III – eles são destinados a proteção fina dos receptores sensíveis (computadores), possuem  uma capacidade baixa de escoamento, devem ser instalados a jusante de um DPS Classe II.

– Classe I – 25  kA e 50 kA, com contato de sinalização remota.

– Classe I+II – 12,5 kA e 25 kA, com contato de sinalização remota.

– Classe II – 8 kA, 20 kA, 40 kA e 65 kA.

DPS mono, bi e tetrapolares

Proteção para os DPS’s

Um disjuntor é necessário para garantir a segurança da instalação.

Cada DPS deve obrigatoriamente ser associado a um disjuntor a montante em série.

Este disjuntor assegura:

  • continuidade de serviço quando o DPS chegar ao fim de sua vida,
  •  também permite isolar facilmente o DPS, quando  for substituído preventivamente.

Após ter determinado o tipo de DPS adaptado à instalação, é necessário escolher um disjuntor apropriado. A capacidade de interrupção deve ser compatível com a capacidade de interrupção no ponto da instalação e também totalmente coordenado com o DPS.

O fabricante deve garantir esta coordenação e fornecer uma lista de escolha para os quais os testes foram realizados.

Encontramos também no mercado DPS’s para serem inseridos nos pontos de tomada de energia elétrica, para proteção de equipamentos como computadores, televisores, entre outros.

DPS para ponto de tomada elétrica

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • -

  • -

NR-10 – Segurança no Trabalho com Eletricidade

NR-10

NR-10

Todos os profissionais que atuam com eletricidade ou em seu entorno devem obter certificação NR-10, que se trata de um treinamento voltado para segurança no trabalho com eletricidade.

O treinamento de NR-10 é dividido em duas partes:

download

Choque Elétrico

Riscos Elétricos

Primeiros Socorros

Primeiros Socorros

 Primeiros Socorros

A primeira deve ser ministrada por profissional habilitado na área elétrica, já o segundo por profissional habilitado em medicina no trabalho ou bombeiro.

Para o profissional que participa do treinamento básico pela primeira vez, terá duração de 40 horas, sendo dividido em 20 horas para Riscos Elétricos e 20 horas para Primeiros Socorros, e o certificado terá validade de 2 anos.

A cada 2 anos deverá participar de treinamento de reciclagem de 20 horas.

Em NR-10 você obterá mais informações sobre esse treinamento.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


  • 2

Poda de galhos de árvore.

butterfly
Tenha muita atenção ao podar galhos de árvores.
Primeiro, porque trata-se de trabalho em altura e faz-se necessário estar capacitado para esse fim.
Segundo, pode haver fios de energia elétrica envoltos pelos galhos de árvore, o que poderá ocasionar acidentes de graves proporções.
images (1)
Quando houver necessidade de podar galhos de árvore em área particular, contrate uma empresa especializada a fim de não correr riscos desnecessários como quedas, cortes, acidentes com terceiros, danificações ao patrimônio, entre outros.
Os serviços de poda de galhos de árvores localizadas em calçadas e praças públicas somente poderão ser executados pela Prefeitura ou Concessionária de Energia Elétrica, sendo que esta última só tem permissão da Secretária do Meio Ambiente para podar os galhos de árvores que estiverem interferindo na rede de energia elétrica. Os demais galhos, se necessário, deverão ser podados pela Prefeitura.
A poda de galhos de árvore não autorizada pela Prefeitura será passível de multa.

CURTA Adolpho Eletricista

Adolpho Eletricista – Seu Eletricista em São Paulo!

Eletricista residencial, predial, comercial e industrial.

Atendo Grande São Paulo e Zona Sul de São Paulo.


Posts recentes

Desenvolvido por : TyttoSoft (11) 9466-02599